绝 对值型编码器能够不依赖外部电源记录编码,有时是需要借助电池的。然而电池寿命就称为经常被诟病的部分。编码器电池如果没电了,那么绝 对型编码器就和增量的没啥区别了。换电池的过程必然是影响设备生产的,只是其发生的频次可能并不高,比如一年换一次电池。但每次更换的时间就很不确定了,更换编码器电池本身并不麻烦,麻烦的是从库存里找备件电池的过程。而且电池是很难备的,因为仓库里放很久的电池很电量如何也是个问题。
还是用刚才的例子,设备产能是1000元/分钟,每次更换电池需要15分钟(包括从仓库领备件的时间),电池每年更换一次,那么更换电池操作上,就是每年每台编码器 1.5万元的花费。所以,寿命长、性能佳的编码器电池真的是很贵的。
于是,现在有些绝 对型编码器是不需要使用电池的,主要是一些正余弦编码器,如:EnDat/Hiperface Steggman,这样就再也不用考虑电池寿命的问题了。当然,通常这样的编码器也不便宜的。
所以,别小看微不足道的小部件,看似不大的变化,涉及金额也不大,可是却对产能效益影响不小。在我们的生产设备中,这样的小部件的还有不少,我们以后慢慢聊。
ps:上面说使用了绝 对型编码器,可以减少在设备断电开机后设备运行前的回原点初始化工作,但并不意味着设备不需要有回原点功能。因为,当设备传动部件拆解重新组装后(如在整修时),编码器记录编码和机械实际坐标的相对位置就丢失了,需要在调试开机时重新做初始化。
编码器的抗干扰能力!
编码器是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。
编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。
1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示"PG断开"...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电开路输出和推挽输出三种,其信号的传递方式须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。
编码器一般分为增量型与绝 对型,它们存着大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝 对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯 一的; 因此,当电源断开时,绝 对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的; 不像增量编码器那样,须去寻找零位标记。
编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。
编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1"还是"0";非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1"还是"0"。
按照工作原理编码器可分为增量式和绝 对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝 对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。
绝 对编码器由机械位置决定的每个位置的唯 一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。
由于绝 对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝 对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝 对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝 对型编码器串行输出常用的是SSI(同步串行输出)。