增量编码器的分辨率是多少?增量式编码器和绝对式编码器的区别介绍!
增量编码器码盘是由很多光栅刻线组成的,有两个(或4个,以后讨论4个光眼的)光眼读取A,B信号的,刻线的密度决定了这个增量型编码器的分辨率,也就是可以分辨读取的小变化角度值。代表增量编码器的分辨率的参数是PPR,也就是每转脉冲数,例如每圈刻线360线,A,B每圈各输出360个脉冲,分辨率参数就是360PPR。那么这个编码器可分辨的小角度变化量是多少度呢?就是1度吗?
增量编码器的A/B输出的波形一般有两种,一种是有陡直上升沿和陡直下降沿的方波信号,一种是缓慢上升与下降,波形类似正弦曲线的Sin/Cos曲线波形信号输出,A与B相差1/4T周期90度相位,如果A是类正弦Sin曲线,那B就是类余弦Cos曲线。
对于方波信号,A,B两相相差90度相(1/4T),这样,在0度相位角,90度,180度,270度相位角,这四个位置有上升沿和下降沿,这样,实际上在1/4T方波周期就可以有角度变化的判断,这样1/4的T周期就是小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取角度的变化,这就是方波的四倍频。这种判断,也可以用逻辑来做,0代表低,1代表高,A/B两相在一个周期内变化是0 0,0 1,1 1,1 0 。这种判断4倍频,还可以判断旋转方向。
那么,方波信号的小分辨角度=360度/(4xPPR)。
前面的问题:一个方波A/B输出360PPR的增量编码器,小分辨角度=0.25度。
严格地讲,方波高只能做4倍频,虽然有人用时差法可以分的更细,但那基本不是增量编码器推荐的,更高的分频要用增量脉冲信号是SIN/COS类正余弦的信号来做,后续电路可通过读取波形相位的变化,用模数转换电路来细分,5倍、10倍、20倍,甚至100倍以上,分好后再以方波波形输出(PPR)。分频的倍数实际是有限制的,首先,模数转换有时间响应问题,模数转换的速度与分辨的精 确度是一对矛盾,不可能无限细分,分的过细,响应与精 准度就有问题;其次,原编码器 的刻线精度,输出的类正余弦信号本身一致性、波形完 美度是有限的,分的过细,只会把原来码盘的误差暴露得更明显,而带来误差。细分做起来容易,但要做好却很难,其一方面取决于原始码盘的刻线精度与输出波形完 美度,另一方面取决于细分电路的响应速度与分辨精 准度。
绝对式编码器和增量式编码器的区别
二、光电编码器的应用
1、角度测量
汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。
2、长度测量
计 米 器,利用滚轮周长来测量物体的长度和距离。
拉线位移传感器,利用收卷轮周长计量物体长度距离。
联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。
介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。
3、速度测量
线速度,通过跟仪表连接,测量生产线的线速度
角速度,通过编码器测量电机、转轴等的速度测量
4、位置测量
机床方面,记忆机床各个坐标点的坐标位置,如钻床等
自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等
5、同步控制
通过角速度或线速度,对传动环节进行同步控制,以达到张力控制
三、增量型编码器(旋转型)
1、工作原理:
由一个中 心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。
由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。
编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。
分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
2、信号输出:
信号输出有正弦波(电流或电压),方波(TTL、HTL),集电开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。
信号连接—编码器的脉冲信号一般连接计数器、plc、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。
如单相联接,用于单方向计数,单方向测速。
A.B两相联接,用于正反向计数、判断正反向和测速。
A、B、Z三相联接,用于带参考位修正的位置测量。
A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减小,抗干扰佳,可传输较远的距离。
对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。
对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。
3、增量式编码器的问题:
增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝 对型编码器可以解决。
增量型编码器的一般应用:测速,测转动方向,测移动角度、距离(相对)。
四、绝 对型编码器(旋转型)
绝 对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的一的2进制编码(格雷码),这就称为n位绝 对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。
绝 对编码器由机械位置决定的每个位置是唯 一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。
从单圈绝 对值编码器到多圈绝 对值编码器
旋转单圈绝 对值编码器,以转动中测量光电码盘各道刻线,以获取唯 一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝 对编码唯 一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝 对值编码器。
如果要测量旋转超过360度范围,就要用到多圈绝 对值编码器。
编码器生产厂家运用钟表齿轮机械的原理,当中 心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝 对编码器就称为多圈式绝 对编码器,它同样是由机械位置确定编码,每个位置编码唯 一不重复,而无需记忆。
多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点, 将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。