低压直流伺服电机有哪些调速方法?直流伺服系统的控制原理介绍!
低压直流伺服电机调速,往往说的是他励有刷直流电机调速,根据直流电机的转速方程,转速n=(电枢电压U-电压电流Ia*内阻Ra)÷(常数Ce*气隙磁通Φ),因为电枢的内阻Ra非常小,所以电压电流Ia*内阻Ra≈0,这样转速n=(电枢电压U)÷(常数Ce*气隙磁通Φ),只要在气隙磁通Φ恒定下调整电枢电压U,就可以调整直流电机的转速n; 或者在电枢电压U恒定下调整气隙磁通Φ,同样可以调整电机的转速n,前者叫恒转矩调速,后者称之为恒功率调速。
低压直流伺服电机恒转矩调速方式
恒转矩模式下,要先保持气隙磁通Φ恒定,直流电机的定子和转子磁场是正交状态的,互相没有影响。要保持Φ恒定,只要保证励磁线圈的电流稳定在一个值就可以了。理论上给一个恒流源来控制励磁线圈的电流是比较完美的,但是因为电流源不好找,而一般给励磁线圈施加一个稳定的电压值,也可以近似让励磁电流稳定,进而让气隙磁通Φ恒定。如果是永磁直流伺服电机,用永磁铁来替代了励磁线圈,磁通是永久恒定的,所以不用操这个心了。
简单的调整电压,并不能满足负载波动比较厉害的场合,所以引进了串级调速系统,通过检测电机的电流和转速,分别弄出电流环内环和速度环外环了,使用PID算法,有效的满足了负载波动状况下的调速,让直流电机的调速工作特性非常“硬”,也就是最大转矩不会受到转速的波动而变化,实现了真正的恒扭矩输出。这种调速方式,一直是交流调速系统的模仿对方,比如变频器矢量控制,就是模仿这种方式而实现的。如果只用电流环内环,还可以直接控制电机输出一定的扭矩,满足不同的拉伸和卷曲等控制要求。
电枢电压控制,在晶闸管和IGBT这些没有被发明前,控制起来也不是容易的事情了,毕竟功率比较大,早期是通过一台发电机直流发电来控制的,通过调整发电机的磁通就可以控制发电机的输出电压,进而调整了电枢电压大小的。
在晶闸管可控硅被发明出来以后,通过给可控硅施加交流输入电压,利用移相触发技术控制可控硅的导通角,就可以把交流电整流成一定脉动的直流电,因为直流电机是大感性负载,脉动直流电会被大电感缓冲稳定下来。这个直流电的电压是可以调整的,和可控硅的导通角成一定的比例关系。这种调速技术是非常成熟可靠的,在上个世纪中后期得到了广泛的工业应用。
另外场效应管和IGBT之类的器件出现以后,低压直流伺服电机调速还可以做得更加精密了,可以利用PWM斩波技术,让输出的直流电压非常稳定,这样直流电机的转速波动非常小,如果让电机的转子变长点,转动惯量变小了,外加了位置环进去,还可以实现精确的定位控制,这个就是所谓的直流伺服系统了。
低压直流伺服电机恒功率调速方式
就是所谓的弱磁调速,这种调速方式,本质是恒转矩调速方式的一种补充,主要是有些场合,需要比较宽的调速范围,比如有些龙门床,需要电机加工时候进刀非常慢,扭矩要很高;而退回来时候扭矩很轻看是要跑非常快,这时候进刀时候用恒转矩调速模式,而退回来时候用弱磁调速方式,这时候电机的最大功率是不变的。
也有些电动车,低速上坡时候要跑很慢,需要很大扭力,而平路阻力小又想跑非常快,这时候也需要用到恒功率调速,类似于机械变档或者调减速比的方式来调速。一般弱磁调速,是不适合于永磁电机的,因此磁通Φ无法单独控制。
要弱磁,就是直接减少气隙磁通Φ的大小,这时候可以降低励磁线圈的电流,一般也会在励磁线圈使用可控硅或者场效应管这些来做一个PI调整回来输出一个电流源来实现。
弱磁调速的时候,电机转速越高,电机输出的最大扭矩会越小,这个是需要注意的,而且一般也不会无限制的减小下去,大概能控制在额定励磁电流的90%左右。
直流伺服系统的控制原理以及优缺点
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),其结构组成和其他形式的反馈控制系统没有原则上的区别。伺服系统最初用于国防军工, 如火炮的控制, 船舰、飞机的自动驾驶,导弹发射等,后来逐渐推广到国民经济的许多部门,如自动机床、无线跟踪控制等。
直流伺服系统的优缺点
1、优点
精确的速度控制
转矩速度特性很硬
原理简单、使用方便
价格优势
2、缺点
电刷换向
速度限制
附加阻力
产生磨损微粒(对于无尘室)
直流伺服系统的控制原理
直流伺服和交流伺服相似,可以采用控制器开环控制方式,控制器半闭环控制和全闭环控制系统。
直流伺服系统控制面板结构如下,面板右侧为与直流伺服电机接口板的接口,包括电机驱动接口和编码器接口;左侧为与运动控制器面板的接口,包括位置控制模式接口和速度控制模式接口。
M+,M-信号为直流无刷伺服电机的电源线,用于驱动电机的运动。
A+,A-,B+,B-,C+,C-,5+,0V信号为编码器信号,用于反馈电机轴的实际位置。
A,/A,B,/B,C,/C,+5V,PUL+,DIR+,OGND,OVCC,GND,DAC,RESET,ALM,ENABLE为与控制器相连的控制信号。
其含义为:
A,/A,B,/B,C,/C为驱动器反馈给运动器控制器的编码器信号。
+5V为电源。
PUL+,PUL-为脉冲信号,用于位置模式下的电机控制。
DIR+,DIR-为方向信号,用于位置模式下的电机控制。
OGND,OVCC,GND分别为模拟地,模拟电源和数字地。
DAC为驱动器接受的模拟控制信号,范围一般为-10V-10V。
RESET,ALM,ENABLE为控制信号,分别表示驱动器的复位,报警以及使能功能。
直流伺服驱动器通常具有速度控制模式和位置控制模式。
采用位置模式时,输入控制信号为脉冲和方向(或是正负脉冲),采用速度模式时,输入控制信号为模拟量。驱动器将输入信号转化为速度控制信号,经过速度控制器转化为电流控制信号,电流信号通过PWM回路作用于功率扩大模块的输出模块,最后施加给电机。
直流伺服驱动器采用IDM只能伺服驱动器。
IDM240/640是嵌入式智能、高精密、全数字化的伺服驱动器,可驱动方波或正弦波无刷伺服电机(PMSM),直流有伺服电机,通过CAN或RS-485接口可组成多达256个轴的分布式智能网络运动系统,嵌入的高级可编程运动语言(TML)提供各种高级运动控制和plc专用功能。
主要特点如下 :
分布式智能,单轴主控运行或从动轴模式
控制模式:位置,速度,转矩,电压,外部变量
运动模式:脉冲+方向,电子齿轮,Profiling,Contouring
可编程保护:位置误差,过流,过压或欠压,I2t,
DSP控制技术:基于MotionChipTM 技术
RS232/485串行接口,波特率可达115KB
CAN2.0局域总线,兼容CANopen,波特率可达1MHz
输出电流:连续电流5A/8A,峰值电流16A,
电源电压:12-48VDC(IDM240) ,12-48VDC(逻辑电源)/80V(电机)(IDM640)
紧凑结构设计:136 x 84.5 x 26 mm
控制软件采用Easy Motion Studio,控制软件特点如下:
高级图形化评估分析编程工具EasyMotion Studio平台快速设置电机、驱动器参数及编程运动程序,TML_LIB函数库是智能化伺服驱动器在 PC上执行运动控制应用的一个函数库,在C/C++、Basic、Delphi、Labview开发的应用程序中调用库中的.DLL文件执行后,能直接与驱动器通信、设置参数、查询状态、传送命令、定义运动事件,测试输入输出口状态等。
Starter Kit for IDM640:包含驱动器的完整组件,包括一个IDM640驱动器,一个电机,一个I/O板,EasyMotion Studio软件,以及应用程序的帮助和完整文件。是测试您的运动控制程序的理想实验平台。如上所述均包含在一个可立即运行、即插即用的组件中。