伺服系统有什么设计要求?伺服电机的原理及分类介绍!
伺服系统结构上的复杂性,决定了其设计过程的复杂性。实际伺服系统的设计是很难一次成功的,往往都要经过多次反复修改和调试才能获得满意的结果。下面仅对伺服系统设计的一般步骤和方法作一简单介绍。
伺服系统设计要求
1、稳定性
伺服系统的稳定性指在系统上的扰动信号消失后,系统能够恢复到原来的稳定状态下运行,或者在输入的指令信号作用下,能够达到的新的稳定运行状态的能力。
稳定性要求是一项最基本的要求,是保证伺服系统能够正常运行的最基本条件。
2、精度
伺服系统的精度是指其输出量复现输入指令信号的精确程度。
系统中各个元件的误差都会影响到系统的精度,如传感器的灵敏度和精度、伺服放大器的零点漂移和死区误差、机械装置中的反向间隙和传动误差、各元器件的非线性因素等。反映在伺服系统_上就会表现出动态误差、稳态误差和静态误差,伺服系统应在比较经济的条件下达到给定的精度。
3、快速响应性
快速响应性是指系统输出量快速跟随输入指令信号变化的能力,它主要取决于系统的阻尼比和固有频率可以提高快速响应性,但对系统的稳定性和最大超调量有不利影响,因此系统设计时应该对两者进行优化,使系统的输出响应速度尽可能快。
4、灵敏度
系统各元件的参数变化等都会影响系统的性能,系统对这些变化的灵敏度要小,即系统的性能应不受参数变化的影响。具体措施为:对于开环系统,应严格挑选各元件;对于闭环系统,对输出通道中元件的挑选标准可适当放宽,对反馈通道的各元件必须严格挑选,以改善系统的灵敏度。
伺服系统设计步骤及方法
1、设计要求分析,系统方案设计
首先对伺服系统的设计要求进行分析,明确其应用场合和目的、基本性能指标及其它性能指标,然后根据现有技术条件拟定几种技术方案,经过评价、对比,选定一种比较合理的方案。
方案设计应包括下述一些内容:控制方式选择;执行元件选择;传感器及其检测装置选择;机械传动及执行机构选择等。方案设计是系统设计的第一步,各构成环节的选择只是初步的,还要在详细设计阶段进一步修改确定。
2、系统性能分析
方案设计出来后,尽管各具体结构参数还没有确定,也应先根据基本结构形式对其基本性能进行初步分析。
首先画出系统方框图,列出系统近似传递函数,并对传递函数及方框图进行化简(一般应简化成二阶以下系统),然后在此基础上对系统稳定性、精度及快速响应性进行初步分析,其中最主要的是稳定性分析,如不能满足设计要求,应考虑修改方案或增加校正环节。
3、执行元件及传感器的选择
方案设计只是对执行元件及传感器进行了初步选型,这一步应根据具体速度、负载及精度要求来具体确定执行元件及传感器的参数和型号。
4、机械系统设计
机械系统设计包括机械传动机构及执行机构的具体结构及参数的设计,设计中应注意消除各种传动间隙,尽量提高系统刚度、减小惯量及摩擦,尤其在设计执行机构的导轨时要防止会产生“爬行”现象。
5、控制系统设计
控制系统没计包括信号处理及放大电路、校正装置、伺服电动机驱动电路等的详细设计,如果采用计算机数字控制,还应包括接口电路及控制器算法软件的设计。控制系统设计中应注意各环节参数的选择及与机械系统参数的匹配,以使系统具有足够的稳定裕度和快速响应性,并满足精度要求。
6、系统性能复查
所有结构参数确定之后,可重新列出系统精确的传递函数,但实际的伺服系统一般都是高阶系统,因而还应进行适当化简,才可进行性能复查。经过复查如发现性能不够理想,则可调整控制系统的参数或修改算法,甚至重新设计,直到满意为止。
7、系统测试实验
上述设计与分析都还处于理论阶段,实际系统的性能,还需通过测试实验来确定。测试实验可在模型实验系统上进行,也可在试制的样机上进行。通过测试实验,往往还会发现一些问题,必须采取措施加以解决。
8、系统设计定案
经过上述7个步骤及其中多次反复而得到满意的结果后,可以将设计方案确定下来,然后整理设计图样及设计计算说明书等技术文件,准备投入正式生产。
伺服电机的原理、分类及与步进电机的区别
什么是伺服电机?
伺服电动机也可以叫做执行电动机,是自动控制系统中的执行元件,其工作是把收到的电信号转换成电动机轴上的角速度输出或者角位移输出。
自从伺服电机推出以来,伺服电机已经在许多行业中证明了其相当有用。多年来,伺服电机一直参与完成大的任务。它们的尺寸可能很小,但是它们非常强大而且节能。有了这些特点,伺服电机广泛用于遥控玩具车,飞机,机器人和各种工业设备。近年来伺服电机也被用于工业应用,在线制造工厂,制药服务,机器人和食品服务行业。
伺服电机有几种分类?
有直流伺服电机和交流伺服电机两种分类,其主要特点是当信号电压为零时无自转现象;转速随着转矩的增加而匀速下降。
直流伺服电机是小型应用的理想选择,但不能处理大电流浪涌。然而,交流伺服电机能够应对更高的电流浪涌,并在工业机械中得到广泛的应用。谈到价格,直流电机比交流伺服更便宜,所以用得更多。此外,直流电机专门设计用于连续旋转,这使其成为机器人运动的理想选择。
伺服电机的工作原理
伺服电机的工作原理比较简单,但是其工作比较高效。伺服电路内置在电机单元内部,它使用一根通常配有齿轮的柔性轴。电信号控制电机,也决定轴的移动量。伺服电机内部设置简单:小型直流电机,控制电路和电位器。直流电机通过齿轮连接在控制轮上,当电机转动时,电位器的电阻发生变化,控制电路能够精确调节运动和方向。
当轴处于正确的(理想的)位置时,电机停止供电。如果轴没有停在目标的位置,电动机一直运转,直到进入正确的方向。目标的位置通过使用电脉冲的信号线传送。所以,电机的速度与实际和理想的位置成正比。当电机接近所需位置时,电机开始缓慢转动,但电机转到最远时,转速很快。换句话说,伺服电机只需要尽可能快地完成任务,这使得它们成为高效率的设备。
交流伺服电动机在没有控制电压时,气隙中只有励磁绕组产生的脉动磁场,转子上没有启动转矩而静止不动。当有控制电压且控制绕组电流和励磁绕组电流不同相时,则在气隙中产生一个旋转磁场并产生电磁转矩,使转子沿旋转磁场的方向旋转。但是对伺服电动机要求不仅是在控制电压作用下就能启动,且电压消失后电动机应能立即停转。如果伺服电动机控制电压消失后像一般单相异步电动机那样继续转动,则出现失控现象,我们把这种因失控而自行旋转的现象称为自转。
传统直流伺服电动机的基本工作原理与普通直流电动机完全相同,依靠电枢电流与气隙磁通的作用产生电磁转矩,使伺服电动机转动。通常采用电枢控制方式,即在保持励磁电压不变的条件下,通过改变电枢电压来调节转速。电枢电压越小,则转速越低;电枢电压为零时,电动机停转。由于电枢电压为零时电枢电流也为零,电动机不产生电磁转矩,不会出现“自转”。
伺服电机步进电机的区别
1.伺服是高速低扭矩,步进是低速大扭矩
一般说来,伺服轻轻松松都能达到几千的额定转速。比如小功率伺服,也就是750W以内的伺服,日系伺服额定3000转,而欧系伺服甚至能到5000转,6000转。而步进,由于自身的特性,一般也就五六百转。但是它的扭矩却比同规格的伺服大很多,大到都可以省略减速机了。其实步进是很少加减速机的,就几百的转速,再加个减速机,那可真没什么用了。
2.伺服法兰是整的,步进法兰不是整的
伺服的法兰都是10的倍数,比如40,60,80,110,180等,而步进一般是42,57,86等,经常在工程现场听到42步进,57步进就是指法兰尺寸。步进和伺服的法兰不是一个系列,这也是区分伺服还是步进的一个重要因素。
3.伺服的加速时间可以忽略,步进不能忽略
伺服的加速时间只有几毫秒,完全可以忽略不计,而步进电机的加速时间,有几百毫秒,不要小看这点差距,虽然我们用直觉感受不出来,但是它却对机械设备的节拍有着至关重要的影响。
4.伺服过载能力强,步进几乎没有过载能力
伺服电机一般都有过载能力看比如180%,300%等,而步进几乎没有什么过载能力。
5.伺服价格高,步进便宜
这个就不说了,如果单单算重量,步进和废铜烂铁价格差不多了,而伺服,相对来说价格很高。步进主要用于速度不高,不频繁启停的场合,特别是安装空间狭小的地方,甚至,我们可以把步进当做气缸看待。而伺服,用的场合显然比步进更广泛,比如频繁启停,各种高速设备等。